муниципальное бюджетное общеобразовательное учреждение городского округа Тольятти «Школа № 81 имени А.А. Санжаревского»

PACCMOTPEHO

на заседании м/о протокол №1 от 28.09.2023 Руководитель Т.А. Доброва

ПРИНЯТО

на заседании педагогического совета №1 от 30.08.2023 Председатель Н.В. Кравцевич

УТВЕРЖДАЮ

приказ №386 от 31.08.2023 Директор МБУ «Школа №81» Н.В. Кравцевич

РАБОЧАЯ ПРОГРАММА

учебного предмета «Физика» (базовый уровень) для обучающихся 11 классов

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «ФИЗИКА», 11 КЛАСС

Рабочая программа учебного курса «Физика», 11 класс составлена в соответствии федеральным компонентом государственного стандарта общего образования (Приказ Министерства образования Российской Федерации от 05.03.2004г. № 1089 в последней редакции), на основе авторской рабочей программы курса Физика. 11 класс. Шаталина А.В. М.: Просвещение, 2017 г. и обеспечивает изучение предмета на базовом уровне.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО КУРСА «ФИЗИКА», 11 КЛАСС

В результате изучения курса физики на уровне среднего общего образования выпускник на базовом уровне научится:

- объяснять на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
- демонстрировать на примерах взаимосвязь между физикой и другими естественными науками;
- устанавливать взаимосвязь естественнонаучных явлений и приме нять основные физические модели для их описания и объяснения;
- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически её оценивая;
- различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и т. д.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;
- выполнять прямые и косвенные измерения физических величин, выбирая измерительные приборы с учётом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность по заданным формулам;
- проводить исследования зависимостей между физическими величинами: выполнять измерения, на основе исследования определять значения параметров, характеризующих данную зависимость между величинами, и делать вывод с учётом погрешностей измерений;
- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учётом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логические цепочки объяснения (доказательства) предложенных в задачах; процессов (явлений);
- решать расчётные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для её решения, проводить расчёты и оценивать полученный результат;
- учитывать границы применимости изученных физических моделей при решении физических и межпредметных задач;
- использовать информацию и применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Выпускник на базовом уровне получит возможность научиться:

- понимать и объяснять целостность физической теории, определять границы её применимости и место в ряду других физических теорий;
- владеть приёмами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями:
 пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством (энергетические, сырьевые, экологические), и роль физики в решении этих проблем;
- решать практико-ориентированные качественные и расчётные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

Деятельность образовательной организации при обучении физике в средней школе должна быть направлена на достижение обучающимися следующих личностных результатов:

- умение управлять своей познавательной деятельностью;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- умение сотрудничать со взрослым, сверстниками, детьми младшего возраста в образовательной, учебно-исследовательской, проектной и других видах деятельности;
- сформированность мировоззрения, соответствующего современному уровню развития науки; осознание значимости науки, владения достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки; заинтересованность в научных знаниях об устройстве мира и общества; готовность к научно-техническому творчеству;
- чувство гордости за российскую физическую науку, гуманизм;
- положительное отношение к труду, целеустремлённость;
- экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание ответственности за состояние природных ресурсов и разумное природопользование.

Метапредметными результатами освоения выпускниками средней школы программы по физике являются:

1) освоение регулятивных универсальных учебных действий:

- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
- определять несколько путей достижения поставленной цели;
- задавать параметры и критерии, по которым можно определить, что цель достигнута;
- сопоставлять полученный результат деятельности с поставленной заранее целью;
- осознавать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей;
- 2) освоение познавательных универсальных учебных действий:
- критически оценивать и интерпретировать информацию с разных позиций;

- распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развёрнутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- искать и находить обобщённые способы решения задач;
- приводить критические аргументы как в отношении собственного суждения, так и в отношении действий и суждений другого человека;
- анализировать и преобразовывать проблемно-противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- занимать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над её решением; управлять совместной познавательной деятельностью и подчиняться);
 - 3) освоение коммуникативных универсальных учебных действий:
- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за её пределами);
- при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т. д.);
- развёрнуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы;
- согласовывать позиции членов команды в процессе работы над общим продуктом/решением;
- представлять публично результаты индивидуальной и групповой деятельности как перед знакомой, так и перед незнакомой аудиторией;
- подбирать партнёров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
- воспринимать критические замечания как ресурс собственного развития;
- точно и ёмко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Предметными результатами освоения выпускниками средней школы программы по физике <u>на базовом уровне</u> являются:

- сформированность представлений о закономерной связи и познаваемости явлений природы, об объективности научного знания, о роли и месте физики в современной научной картине мира; понимание роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;
- владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное пользование физической терминологией и символикой;
- сформированность представлений о физической сущности явлений природы (механических, тепловых, электромагнитных и квантовых), видах материи (вещество и поле), движении как способе существования материи; усвоение основных идей механики, атомно-молекулярного учения о строении вещества, элементов электродинамики и квантовой физики; овладение понятийным аппаратом и символическим языком физики;
- владение основными методами научного познания, используемыми в физике: наблюдение, описание, измерение, эксперимент; владение умениями обрабатывать результаты измерений, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;
- владение умениями выдвигать гипотезы на основе знания основополагающих физических

закономерностей и законов, проверять их экспериментальными средствами, формулируя цель исследования; владение умениями описывать и объяснять самостоятельно проведённые эксперименты, анализировать результаты полученной из экспериментов информации, определять достоверность полученного результата;

- умение решать простые физические задачи;
- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе и для принятия практических решений в повседневной жизни;
- понимание физических основ и принципов действия (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду; осознание возможных причин техногенных и экологических катастроф;
- сформированность собственной позиции по отношению к физической информации, получаемой из разных источников.

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА «ФИЗИКА», 11 КЛАСС

Физика и естественнонаучный метод познания природы

Физика – фундаментальная наука о природе. Научный метод познания.

Методы исследования физических явлений. Моделирование физических явлений и процессов. Научные факты и гипотезы. Физические законы и границы их применимости. Физические теории и принцип соответствия. Физические величины. Погрешности измерений физических величин. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.

Основы электродинамики

Электрические заряды. Закон сохранения электрического заряда. Закон Кулона.

Электрическое поле. Напряжённость и потенциал электростатического поля. Линии напряжённости и эквипотенциальные поверхности. Принцип суперпозиции полей. *Проводники и диэлектрики в электрическом поле*. Электроёмкость. Конденсатор.

Постоянный электрический ток. Сила тока. Сопротивление. Последовательное и параллельное соединение проводников. Закон Джоуля-Ленца. Электродвижущая сила. Закон Ома для полной цепи. Электрический ток в проводниках, электролитах, полупроводниках, газах и вакууме. Сверх- проводимость.

Магнитное поле. Вектор индукции магнитного поля. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Магнитные свойства вещества.

Явление электромагнитной индукции. Магнитный поток. Правило Ленца. Закон электромагнитной индукции. Явление самоиндукции. Индуктивность. Электромагнитное поле.

Энергия электромагнитного поля.

Колебания и волны

Механические колебания. Гармонические колебания. Свободные, затухающие, вынужденные колебания. Превращения энергии при колебаниях. *Резонанс*.

Электромагнитные колебания. Колеба тельный контур. Переменный электрический ток. Резонанс в электрической цепи. Короткое замыкание.

Механические волны. Продольные и поперечные волны. Скорость и длина волны. Интерференция и дифракция. Энергия волны. Звуковые волны.

Электромагнитные волны. Свойства электромагнитных волн. Диапазоны электромагнитных излучений и их практическое применение.

Оптика

Геометрическая оптика. Скорость света. Законы отражения и преломления света. Формула тонкой линзы. Волновые свойства света: дисперсия, интерференция, дифракция, поляризация.

Основы специальной теории относительности

Постулаты теории относительности и следствия из них. Инвариантность модуля скорости света в вакууме. Энергия покоя. Связь массы и энергии свободной частицы.

Квантовая физика. Физика атома и атомного ядра

Гипотеза М. Планка. Фотоэлектрический эффект. Опыты Столетова. Законы фотоэффекта. Уравнение Эйнштейна. Фотон. Корпускулярно-волновой дуализм. Соотношение неопределённостей Гейзенберга.

Планетарная модель атома. Объяснение линейчатого спектра водорода на основе квантовых постулатов Бора.

Состав и строение атомных ядер. Энергия связи атомных ядер. Виды радиоактивных превращений атомных ядер. Закон радиоактивного распада. Ядерные реакции. Цепная реакция деления ядер. Применение ядерной энергии.

Элементарные частицы. Фундаментальные взаимодействия.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ С УКАЗАНИЕМ КОЛИЧЕСТВА ЧАСОВ, ОТВОДИМЫХ НА ОСВОЕНИЕ КАЖДОЙ ТЕМЫ

11 класс

	11 класс	TO
№	Towa ymova	Кол-во
745	Тема урока Магнитное поле (6 ч)	часов
1	Взаимодействие токов. Магнитное поле.	1
1	Взаимоденствие токов. Магнитное поле.	1
2	Вектор магнитной индукции. Линии магнитного поля Сила Ампера	1
	Электроизмерительные приборы. Применение закона Ампера.	
3	Громкоговоритель	1
4	Действие магнитного поля на движущийся заряд. Сила Лоренца	1
5	Магнитные свойства вещества. Решение задач	1
6	Самостоятельная работа по теме «Магнитное поле»	1
	Электромагнитная индукция (8 ч)	
7	Явление электромагнитной индукции. Магнитный поток	1
8	Направление индукционного тока. Правило Ленца	1
9	Закон электромагнитной индукции	1
10	Вихревое электрическое поле. ЭДС индукции	1
11	Электродинамический микрофон. Самоиндукция. Индуктивность	1
12	Энергия магнитного поля. Электромагнитное поле.	1
13	Обобщение материала по теме «Электромагнитная индукция»	1
14	Самостоятельная работа по теме «Электромагнитная индукция»	1
	Механические колебания (6 ч)	
15	Свободные и вынужденные колебания	1
16	Математический маятник Динамика колебательного движения.	1
	Определение ускорения свободного падения при помощи нитяного	
17	математического маятника (лаб. работа)	1
18	Гармонические колебания. Фаза колебаний	1
	Превращение энергии при гармонических колебаниях.	
	Вынужденные колебания. Резонанс. Воздействие резонанса и борьба	
19	с ним	1
20	Самостоятельная работа по теме «Механические колебания»	1
	Электромагнитные колебания (5 ч)	
	Свободные вынужденные электромагнитные колебания.	
	Колебательный контур. Превращение энергии при	
21	электромагнитных колебаниях	1
	Аналогия между механическими и электромагнитными	
	колебаниями. Уравнения, описывающие процессы в колебательном	
22	контуре. Период свободных электрических колебаний.	1
	Переменный электрический ток. Активное, емкостное и	
23	индуктивное сопротивления в цепи переменного тока.	1
24	Решение задач на характеристики переменного тока	1

2.5	Резонанс в электрической цепи. Генератор на транзисторе.]_
25	Автоколебания	1
	Производство, передача и использование электрической энергии	
	(3 ч)	
26	Генерирование электрической энергии. Трансформаторы	1
27	Производство, передача и использование электрической энергии	1
	Контрольная работа по темам «Электромагнитная индукция.	
28	Электромагнитные колебания»	1
	Механические волны (2 ч)	
	Волновые явления. Распространение механических волн. Длина	
29	волны. Скорость волны	1
	Уравнение гармонической бегущей волны. Распространение волн в	
30	упругих средах. Звуковые волны	1
	Электромагнитные волны (4 ч)	
	Электромагнитные волны. Экспериментальное обнаружение	
	электромагнитных волн. Плотность потока электромагнитного	
31	излучения	1
2.5	Изобретение радио Поповым А. С. Принципы радиосвязи	
32	Модуляция и детектирование.	1
	Свойства электромагнитных волн. Распространение радиоволн.	
33	Радиолокация. Понятие о телевидении. Развитие средств связи	1
	Обобщающий урок «Основные характеристики, свойства и	
34	использование электромагнитных волн»	1
	Световые волны (11 ч)	
35	Развитие взглядов на природу света. Скорость света	1
36	Принцип Гюйгенса. Закон отражения света.	1
37	Закон преломления света	1
38	Решение задач	1
	Экспериментальное определение показателя преломления	
39	стекла(лаб. раб 4)	1
	Линза. Построение изображений в линзе. Формула тонкой линзы.	
40	Увеличение линзы	1
	Экспериментальное определение оптической силы и фокусного	
41	расстояния линзы (лаб.раб.5)	1
42	Самостоятельная работа по теме «Геометрическая оптика»	1
	Дисперсия света. Интерференция механических волн и света.	
43	Применение интерференции	1
	Дифракция механических волн и света. Дифракционная решетка.	
44	Поперечность световых волн. Поляризация света	1
45	Измерение длины световой волны (лаб.раб.6)	1
	ЭЛЕМЕНТЫ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ (3 ч)	
	Законы электродинамики и принцип относительности. Постулаты	
46	теории относительности. Относительность одновременности	1
	Основные следствия из постулатов теории относительности.	
47	Элементы релятивистской динамики	1
48	Обобщающе -повторительный урок по теме «Элементы СТО»	1
	Излучение и спектры (4 ч)	
	Виды излучений. Источники света. Спектры и спектральные	
49	аппараты. Виды спектров	1
	Инфракрасное и ультрафиолетовое излучения Рентгеновские лучи.	
50	Шкала электромагнитных волн.	1
	Решение задач «Световые волны. Элементы теории	
51	относительности. Излучение и спектры Оптика»	1
52	Контрольная работа по теме «Оптика».	1
	Световые кванты (16 ч)	+ -

53	Фотоэффект. Законы фотоэффекта	1
54	Фотоны. Применение фотоэффекта	1
55	Давление света. Химическое действие света. Фотография	1
56	Самостоятельная работа по теме «Световые кванты»	1
	Строение атома. Опыты Резерфорда. Квантовые постулаты Бора.	
57	Модель атома водорода по Бору	1
58	Трудности теории Бора. Квантовая механика. Лазеры	1
	Методы наблюдении и регистрации элементарных частиц. Открытие	
59	радиоактивности. Альфа, бета, гамма излучения.	1
	Радиоактивные превращения. Закон радиоактивного распада.	
	Изотопы Открытие нейтрона. Строение атомного ядра. Ядерные	
60	силы	1
61	Энергия связи атомных ядер	1
62	Ядерные реакции. Цепная ядерная реакция.	1
	Ядерный реактор. Термоядерные реакции. Применение ядерной	
63	энергии	1
	Применение физики атомного ядра на практике. Биологическое	
64	действие радиоактивных излучений	1
	Три этапа в развитии физики элементарных частиц. Открытие	
65	позитрона. античастицы	1
66	Контрольная работа «Физика атома и атомного ядра»	1
	Единая физическая картина мира. Физика и научно-техническая	
67	революция	1
68	Обобщающее повторение	1